
1

ASPF: An Adaptive anti-SPIT Policy-based Framework

Yannis SOUPIONIS, Dimitris GRITZALIS
Information Security and Critical Infrastructure Protection Research Laboratory

Dept. of Informatics, Athens University of Economics and Business (AUEB), Greece
e-mail: {jsoup, dgrit}@aueb.gr

Abstract - SPam over Internet Telephony (SPIT) is a rising IP
voice telephony threat. Voice over IP enables the transmission of
telephone calls over the Internet, as opposed to plain old tele-
phone service. Internet Telephony essentially means low-cost
phone calls, i.e. a clear benefit for both consumers and busines-
ses, which may also lead to cheap methods of mass advertising.
Still, industry observers warn that VoIP's low-cost and openness
makes it relatively easy for spammers to send unsolicited audio-
commercials to VoIP voice-mail inboxes, in much the same way
they currently bombard e-mail inboxes. In this paper we set the
foundations of an adaptive approach that handles SPIT through
an adaptive anti-SPIT policy-based framework (ASPF). ASPF
incorporates a set of rules for SPIT detection, together with ap-
propriate actions and controls that should be enforced, so as to
counter these attacks. ASPF is formally described through an
XML schema. A working prototype is also demonstrated for
evaluating ASPF. The prototype is able to make policy alterati-
ons, based on abnormal network events.

Keywords: Security Policy, Spam over Internet Telephony
(SPIT), Voice over IP (VoIP), Session Initiation Protocol (SIP).

I. INTRODUCTION

The Internet Telephony (Voice over IP) is a developing
technology that promises a low-cost, and high-quality and
availability service of multimedia data transmission. Inevit-
ably though, VoIP "inherited" not only these positive features
of internet services, but also some obvious disadvantages [1].
One of the main disadvantages is Spam over Internet Tele-
phony (SPIT) [2,3], which is the popular expression of Spam
in VoIP network environments. SPIT is a potentially serious
issue that IP telephony will be facing in the near future. This
is the reason why several organizations have already started
developing mechanisms to tackle SPIT [4,5]. Additionally,
VoIP implementations are mainly based on a multimedia pro-
tocol, i.e., Session Initiation Protocol (SIP) [3]. Recent re-
search shows that this protocol is vulnerable to SPIT [7,8].
Thus, a mechanism for adequately preventing and treating this
phenomenon is needed.

Systems, which are designed and implemented to provide
protection against threats like SPIT, follow common practices
and adopt similar principles, with respect to IT Security. A
common practice is to develop a policy-based mechanism,
which is founded on predetermined conditions [6]. These
conditions can be formalized in a structured security policy,
which refers to a set of rules defined by an organization. The-
se rules usually describe how one can access or use a network
element, a service, or a general collection of physical or logi-
cal objects, under protection.

Although policy based frameworks have been successfully
implemented in various domains, such as storage area net-
works [10], networked systems [11] and database manage-
ment [12], the existing solutions are often restricted to conditi-

on-action rules, where conditions are just matched against in-
coming traffic flows [10, 11]. This results in static policy con-
figurations, where the policy cannot be altered according to
context changes. What is needed is an adaptive policy rule set.
Moreover, policy mechanisms [6] are independent of the plat-
form implementation and do not inherit any defect of any
platform. They are, also, easy to be integrated to any context.

In order to meet the above requirements, we herein propo-
se an adaptive policy-based SPIT management framework,
which is able to detect and handle SPIT attacks. The proposed
anti-SPIT policy is as an obligation policy [13,14]. It includes
a set of policy rules, together with the countermeasures that
should be executed whenever a SPIT call/message is detected.
Policy rules do define which behavior is not desired (“illegal”)
in a VoIP system. On the other hand, they do not describe the
actions and event sequences that actually “produce” the unde-
sired behavior. Therefore, our approach can collaborate with
any existing anti-SPIT mechanism. Also, it can collect data
from other anti-SPIT mechanisms, which produce decisions
about SPIT incidents, and create the appropriate policy rules.
This kind of mechanisms could be those based on reputation
or listing (black, grey) methods.

The paper is organized as follows. First, we describe the
research work done on SPIT management. In section 3, we
describe the methodology we followed to develop the propos-
ed policy-based anti-SPIT framework. In section 4, we present
the foundations of our work, which are based on an extensive
study of the SIP protocol with an eye towards identifying the
SPIT-oriented threats and vulnerabilities. In section 5, we des-
cribe how ASPF can be practically applied to a SIP environ-
ment. Then, we introduce the evaluation process and we pre-
sent its effectiveness, as well as the computational resource
needs of the proposed framework. Finally, we end with our
conclusions and plans for future work.

II. RELATED WORK
In this section, we briefly survey techniques and approac-

hes that focus either on preventing SPAM/SPIT, or on imple-
menting policy infrastructure to VoIP environments.

A. Anti-SPIT Mechanisms and Techniques
Α number of anti-SPIT mechanisms and techniques have

been proposed so far. Dantu et al. [15] proposed a multi-stage
Voice Spam Detection (VSD) filter for VoIP networks. VSD
employs Bayesian inference technique to compute the spam
probability of an incoming call. During the learning period,
human intervention is required to mark unsolicited calls. Bala-
subramaniyan et al. [16] proposed a technique that uses call
durations to build social network linkages and global reputati-
ons for users. Long call duration can serve as a call credential

2

from the caller Alice to the call recipient Bob. Then Bob
could leverage this call credential to call user Charlie, who
called Alice recently. This scheme assumes that each VoIP us-
er has a public/private key pair and can generate digital signa-
tures. However, VoIP clients in most of the existing VoIP ser-
vices do not own a private key [17].

Patankar et al. [18] proposed to employ buddy lists of a
VoIP network in order to to establish a trust chain between the
caller and the recipient. In their model, intermediate nodes are
required to generate some messages to help the caller build
the trust chain. They assume that a VoIP client shares a sepa-
rate symmetric key with each user in his buddy list, which is
not easily applicable due to the problem of the key exchange
and key secrecy.

Shin et al. [19] proposed graylisting for fighting voice
spam. The grey level of a caller determines whether the call is
accepted. If a caller launches numerous calls in a certain time
span, his gray level will increase. Once the gray level exceeds
a threshold, all later calls from the caller within a given peri-
od, will be blocked. After the caller stops making calls, the
grey level will decrease and eventually become below the
threshold. The problem of graylisting is its efficiency when
spammers exploit numerous VoIP accounts to launch SPIT, or
when a Sybil attack is occurred. Mathieu, et al. [20] present an
approach which focuses on detecting and mitigating SPIT by
using a sniffing-oriented network-level entity. This entity cap-
tures filters, analyses the network traffic and identifies SPIT
attacks based on specific criteria, from which a weighed sum
(spitLevel) is created. The sum is compared to a threshold and
if it is exceeded, then the call is classified as SPIT.

B. VoIP Policy Infrastructure Methodologies
Existing methodologies for developing anti-SPIT policies

are herein described at an abstract level. They focus mainly on
high level aspects of security. Regarding the anti-SPIT policy-
related work, there are three main implementations. The first
one [21] proposes an authorization policy and recommends an
XML structure, which identifies possible SPIT and suggests
countermeasures. The main drawback of it is that the identifi-
cation is based mainly on users URI and not on other SIP pr-
otocol aspects. Also, it does not include the recommended ru-
les and conditions. An alternative implementation [22] is the
Call Processing Language (CPL), which describes and cont-
rols Internet Telephony services. It is developed for either net-
work servers or user agents. It provides an XML schema, as
well as the proposed values for initial configuration. This ap-
proach is quite generic. It focuses on how one can represent
VoIP services, but ignores the SPIT phenomenon and how it
can be prevented.

III. METHODOLOGY

The specific SPIT management methodology, that we ha-
ve adopted, is depicted - in a functional manner - in Fig. 1.

A. Foundation Step	
The first step of the methodology aims at creating the ba-

sic elements (conditions/countermeasures) of the anti-SPIT
Policy (partially presented in [23]).

Figure 1. ASPF methodology

The first sub-step was to identify the SIP-oriented SPIT
threats by examining and analyzing the SIP protocol [9]. The
result of the SIP analysis was a number of well-defined SPIT-
related threats and vulnerabilities, in accordance with the SIP
RFC [9]. Before doing so, we studied the email SPAM pheno-
menon, so as to indicate the ways and techniques that the at-
tackers and the defenders used through time [24,25].

The second sub-step was to develop attack scenarios that
can exploit the existing vulnerabilities. We used SPIT-orient-
ed attack graphs to determine how vulnerable the SIP protocol
is. We also use it to determine attack scenarios, which were
used as input to the next sub-step, the definition of the policy
conditions.

The identified conditions are the main element of our poli-
cy. When a condition is fulfilled, then a SPIT attack is identi-
fied. Moreover, there should be actions capable of countering
each and every attack. The majority of actions are SIP messa-
ges [26,27], because the policy should be transparent to the
administrators and users and keep to a minimum the participa-
tion of other applications during message handling.

The final step of this section is the development of an
XML schema. The schema links attack scenarios (conditions)
and countermeasures (actions) in a formal policy. It, also, pro-
duces a flexible policy description, which could be adopted
not only by our anti-SPIT module but also by most SIP infras-
tructures.

B. Implementation Step
The way to integrate, enforce, and dynamically update the

XML policy is described in the implementation step. The imp-
lementation step describes the execution environment of the
policy-based framework (Section 6). Although it is based on
known policy infrastructures [11,12], specific adjustments ha-
ve been made, so as to fulfill the needs of a VoIP system. The
components of the proposed anti-SPIT policy framework are:
1. The Policy Decision Module (PDM). The input to it is

the parsed XML document, together with the message at-
tributes. Here all the conditions are checked, so as to find
out which are satisfied and which not (actually, first a
SIP message is received and parsed, and then the mes-
sage attributes are checked against the policy elements).

2. The Event Module (EM). The EM evaluates if an event is
applicable for policy monitoring. Then, it stores it for fu-
ture evaluation in history log. These events are specified
by a custom event set. The policies are updated and alter-
ed by the policy optimizer, which does not act in real-

3

time and is independent from detection and enforcement
modules.

3. The Policy Enforcement Module (PEM). If one or more
conditions are met, then the proposed action (described
in the fulfilled policy element) does take place. The PEM
is part of the VoIP infrastructure runtime environment,
because it should be able to interfere in the communica-
tion process and enforce the policy actions.

4. The Monitor Module (MM). It monitors, in real-time, a
number of system attributes. When an undesired behavi-
or occurs, it informs the Event module or Decision mo-
dule of its characteristics.

IV. FOUNDATION STEP

A. Vulnerabilities and SPIT Criteria Identification	
Because of the real-time nature of VoIP sessions and ser-

vices, handling SPIT is more efficient in the signaling phase -
the SIP protocol phase - rather than in-call. An analysis of the
SIP protocol yielded the following categories of SPIT-related
SIP vulnerabilities and threats [7,8,28]: (a) exploitation of
messages and header fields structure, (b) header fields of mes-
sages, and (c) general vulnerabilities. For the analysis we con-
sidered threats related to SIP protocol vulnerabilities, as well
as SIP RFC optional recommendations. We did not take into
account any vulnerabilities based on the interoperability with
other protocols. This categorization accounts for the various
points in the communication process where anti-SPIT policy
actions are enforceable, in particular for those entities involv-
ed in the SIP session establishment.

Any identified vulnerability actually affects every partici-
pating entity of a SIP session. Any participating entity does
not have a particular status for the entire session. For example,
an entity that participates to a SIP negotiation process might
also do so in the receiving/transmitting of SIP messages (re-
quests/responses). This should help the administrator/user to
adjust the policy according to his preferences.

B. Attack scenario development
Attack graphs can be primarily exploited for intrusion de-

tection, defense, and forensic analysis [29-31]. In [32] a SIP-
oriented SPIT attack model, based on attack graphs, was pre-
sented. In this paper, the SIP-oriented SPIT attacks were first
described in abstract level, called abstract attacks, which cons-
titute the attack graph nodes. Then, the attack graph was deri-
ved from the steps followed to accomplice a SPIT attack and
the relationship among the abstract attacks. The attack graph
nodes are depicted in Table 1.

TABLE 1 ATTACK GRAPH NODES

Node Description
1 Find and collect users’ addresses
2 Send bulk messages
3 Proxies-in-the-middle
4 Maximize profit
5 Hide identity-track when setting-up an attack
6 Hide identity-track when sending a SPIT call/message
7 Encapsulate SPIT in SIP messages

In Fig. 2 we illustrate the attack graph (left sub-image) and
an attack tree example based on node 7. The arrows depict the
possible connections/relations between the attacks. The graph
does not have a single start-node or end-node; it just demons-
trates the exploitation of SIP protocol vulnerabilities, so as a
malicious user can conduct a SPIT attack.

The path followed to produce a SPIT attack leads to a
SPIT scenario. A specific attack scenario, which is extracted
by the attack graph (attack graph path), follows: In order for
the attacker to start sending SPIT message, he has to collect
valid SIP URIs (node 1). For this cause, the attacker could
start ambiguous requests (identified vulnerability) to proxies
(node 2), so as to collect SIP URIs addresses of his potential
SPIT victims. Then the “spitter” a) could simple start an at-
tack, or b) could start sending the 300 response messages
with multiple addresses in Contact field, so as to add malici-
ous URIs to proxies or UAS (node 5).

C. Policy Approach
Now we present how the attack scenarios can be transfor-

med into SPIT-oriented attack patterns and how this leads to
the development of policy rules.

1. Policy Rule
The policy rule is the key element of the policy. A policy

rule consists of a Condition, which is a pattern of an identified
SPIT attack scenario, and an Action, which is the reaction of
the callee’s UAC or domain to the SPIT attack.

a. Policy Condition
The condition is expressed by identifying specific attribu-

tes from an attack scenario. In order for a condition to be met,
we should create precise sub-conditions for each attribute.

Let us focus the last part of the scenario of previous secti-
on. Its attributes are: (a) the message code is 300, (b) there are
multiple Contact fields. Each attribute produces a sub-conditi-
on. The logical aggregation of these sub-conditions results to
the following policy condition:

݊݋݅ݐ݅݀݊݋ܥ = ݁݀݋ܥ] = ݐܿܽݐ݊݋ܥ	⨁300 ≍ (1)	[݈݁݌݅ݐ݈ݑܯ

More generally, a condition is defined as:

݊݋݅ݐ݅݀݊݋ܥ = ݂(ܿଵ, ܿଶ, , ܿ௞) = ܿଵ ⋄ ܿଶ ⋄ ⋄ ܿ௞

where c୧ is a sub-condition and denotes the logical operator
to be Å (AND) or Ä (OR). The operators that are used in sub-
conditions are: (a) = equal, (b) times of header appearance

Figure 2. SPIT attack graph and an example of an attack tree

4

(Multiple, One, None), (c) »1 approximately equal, (d) >
greater, and (e) < less.

b. Policy Action
The other half of a policy rule is the policy action. The ab-

sence of the context (inside which each scenario is taking pla-
ce) is considered critical in deciding the reaction of the corres-
ponding entity that need to be taken. Different contexts mean
different security needs. Different security needs translate to
different countermeasures. That said, the countermeasures/
actions that can deal with the conditions cannot be strict, as
this could be considered an ASPF limitation.

That is why the actions were divided into two categories
and a set of suggested actions, that can be taken when each
condition occurs, was produced. Moreover, the ASPF can a-
dapt any future recommended actions and integrate them in
the proposed set of countermeasures. The policy action cate-
gories are:
1. Block. This countermeasure leads to the rejection of the

SIP message. It occurs when a SPIT condition is true.
The SIP message sent to the caller is “403 -Forbidden”.
Moreover, the action could contain a more informative
reason for the rejection. This can aid the request entity to
alter the message and meet the necessary requirements of
the callee, or her/his domain. A typical SIP message
could be “488 - Not Acceptable Here” and description
“Inappropriate word in Subject”.

2. Notify. This countermeasure means that we are not confi-
dent whether this message is SPIT or not. Therefore, the
message is not rejected, but it is forwarded wherever the
administrator/user desires. The request entity receives a
SIP 183 “Session in Progress” message, in order for the
request entity to be notified that his message has been
redirected to a decision-support application. It may be
the case that the message is forwarded to the callee after
it is altered, so as to comply with the policy rules (the ad-
ministrator receives the notification in a log file).
An example of a set of actions proposed for the above

condition (1) is:
1. The UAC address book is updated with the new addres-

ses.
2. The UAC informs the user for the new SIP addresses
3. The UAC rejects the call and returns a Message 403

“Forbidden”
4. The UAC rejects the call and returns a 488 “Not Accept-

able Here” message with description “Multiple Contact
fields”

5. The UAC forwards SIP message to another entity and re-
turns a message 183 (Session in Progress)
The final decision of which action will be taken is left to

the administrator or to anyone who is responsible to produce
the policy instance and secure the particular communication.

2. Policy Instance Creation
The entities that participate in a communication can have a

different policy, i.e., the policy instance for each entity inclu-

1 The approximately equal operator means that if a header field A
has multiple values, then it is approximately equal to header field
B when one of its values is equal to the value of the other field.

des a different set of policy rules. The method to produce a
policy instance, based on the development of SPIT condition
and countermeasures for a participating entity, is depicted in
Fig. 3. Which rules are going to be included is delegated to
the person who is responsible for each communication entity.

Figure 3. ASPF policy creation

D. .XML representation
The XML schema representation includes the identificati-

on characteristics of the attack attributes, together with the re-
lation between them. The schema is produced in order to be
easy for the administrator to develop a policy element that is
easily processed by an automated procedure. The xml schema
is really extended. We now illustrate briefly the main tags.

The main element of the XML policy structure is the Rule-
Item. A RuleItem consists of two elements, the Subject, on
which the condition is applied (Caller, Callee, Caller’s doma-
in, (d) Callee’s domain), and the Rule, which obtains the poli-
cy element. The second element of the RuleItem is the Rule,
which records a certain condition and introduces the proper
action, when this condition is met. A Rule element consists of
three tags, namely: (a) the Trigger tag, which denotes when
the rule is checked, and its values are: Receive Message,
Create Message, (b) the Condition tag, and (c) the Action tag,
which refers to the action that must be applied.

The second tag of Rule Item, i.e., the condition. The con-
dition can appear one, many, or no times in a Rule, in order to
fulfill the produced attack pattern. It consists of: (a) the Item
tag, which can be a header field or a request type (INVITE,
OPTION, etc.), (b) the Value tag, which is the checked value
of the Item, (c) the Relation tag, which is the relation/logical
operator between the Item and the proposed value, and (d) the
Logical Operator tag, which is an optional element and exists
either if the condition includes more than one sub-conditions
or if the condition is easier to be expressed like a negation
condition. The values of this tag can be only AND, OR, and
NOT.

The third part of the Rule tag is the Action. The action
element is processed only if the Trigger and the Condition are
fulfilled. An action consists of (a) the Obligation tag, which
has two distinct values “Must” and “Must Not” whether the
action is optional or not, (b) the Actiontype element, which in-
dicates the exact action to be made. The most common actions
are (a) Notify, which suggests implies a process that should be
done by the proxy, and (b) Return message, which means

5

composing of a return message that requests for a new task by
the caller’s UAC or it just terminates the call.

V. IMPLEMENTATION STEP

Once the XML schema is produced, then the VoIP admi-
nistrator or the user can deploy an XML policy instance, de-
pending on the attributes of the environment. In this section
we describe how an XML policy instance is integrated and en-
forced in a VoIP SIP infrastructure. All the building modules
will be presented, in particular those that assist the framework
to be dynamically adaptive to the network changes, based on
history/time events. Finally, the evaluation of the proposed
framework will be also presented.

A. Architecture Components for PolicyEnforcement
We now present the modules that help the policy be

enforced in the VoIP infrastructure. The policy enforcement
process is based on existing research [33-35], which has been
customized to the specific needs of a VoIP environment.

The three main modules used for the policy enforcement
are: (a) the Policy Decision Module, (b) the Policy Enforce-
ment Module, and (c) the Policy Repository.

1. Policy Decision Module
The Policy Decision Module (PDM) is responsible to check
for “illegal” messages. It retrieves the appropriate XML poli-
cy instance document and the SIP message attributes, and de-
cides whether the SIP message is a SPIT threat or not. Every
SIP message passes through the PDM, except for those which
suffer by syntactical errors, which are rejected by the SIP par-
ser. In this module all the policy conditions are checked. In
order to minimize the process time we use Xpath queries [41]
on the XML policy for each attribute/sub-condition. Finally,
the PDM can send a SIP message for further evaluation to
Event Module, and wait for an answer.

2. Policy Enforcement Module
The Policy Enforcement Module (PEM) is the framework

entity that enforces the decisions made by the PDM. The in-
volved actions are clearly stated in the XML policy. They
mainly refer to a SIP message. When a condition is met, then
the proposed action does take place. The PEM acts in the run-
time system and sends an operation description (mainly a SIP
message) to the application level entity, which is the domain
or the corresponding UAC.

3. Policy Repository
The Policy Repository (PR) is responsible for keeping the

XML policy instances. The PR is able to keep XML policies
not only for domains, but also for each user. Moreover, the PR
is able to keep policies to more than one host. Finally, the PR
is initiated whenever the Decision module requests a specific
policy for a newly arrived SIP message.

B. Architecture Components forAdaptive and Dynamic
Policy Management

Dynamic policy management requires a form of history-
based event control. The decision whether the calls are chara-
cterized as SPIT or not, depends on both, their having already
performed related calls (in the same context), and evaluating
monitored attributes, which have being changed in a not com-
pliant way. For example, the UAC A might call UAC B seve-

ral times per day, but it is going to be strange if this number of
calls start increasing significantly. Therefore, if the call num-
ber exceeds a threshold, then the policy management frame-
work should be alerted and may ban these calls. The two main
modules, which support the dynamic nature of the proposed
framework, are the Event Module and the Monitor Module.
Those two, together with the History/Event module, make the
framework effective without producing any significant annoy-
ance.

1. Event Module
The Event Module (EM) is being activated when the Poli-

cy Decision Module (PDM) sends it a message. Not all mes-
sages are sent to EM, but only those indicated to either pro-
duce or be able to produce a SPIT attack or other undesired
behavior. The SIP rejected messages are sent to EM, to be sto-
red in the history log for future evaluation. The main procedu-
re of the EM is the evaluation process. This is called policy
optimizer. It is initiated by the EM periodically and tries to
identify call patterns and characteristics, e.g., large number of
errors, unanswered calls from a domain, etc.

SIP messages evaluation is done through the following cri-
teria [37,38]:
1. The number of call messages, in a certain time frame that

was made by a specific user.
2. The number of unanswered calls in a certain period of

time.
3. The number of errors of the specific domain or user in

certain period of time (as those messages were sent to a
nonexistent client, there might be a SPIT attack).

4. Identification of the SIP messages pattern, i.e., if the re-
ceivers’ addresses follow a specific pattern (e.g. alphabe-
tical SIP URI addresses), then the call (message) is flag-
ged as SPIT.

When a specific pattern is recognized, then the module eit-
her alerts the policy administrator, or - if it is a simple situati-
on, like blacklisting a domain - it updates the corresponding
policies in the policy repository. The EM evaluation process
(policy optimizer) allows the decision made to take into ac-
count not only the current event, but also the relevant previous
events (history-based), in order to meet the SPIT complaint
criteria. The policy optimizer runs periodically, but it can also
run on demand if the EM receives either a request by the
PDM or a notification by the Monitor module. This happens
when: (a) the PDM or MM identifies an abnormal event, like
an increased network flow, or (b) there is a policy action re-
questing it, for example this can be adjusted by the adminis-
trator for every message from a specific domain.

The number of calls the callee could receive before the E-
vent module reaches a conclusion could be huge. In order to
minimize the callee annoyance, our policy we could include
the CAPTCHA solution [39] as a notify action. Thus, every ti-
me a call reaches the callee and the caller is not known, the
policy could redirect the call to a CAPTCHA module to iden-
tify whether the caller is a human or bot.

2. Monitor Module
The Monitor Module (MM) helps the proposed framework

collect useful data. It does so without overloading the decision

6

module by messages or affecting the performance of the sys-
tem.

The Monitor Module supervises the consumption of the
computational resources, i.e., it checks the system CPU and
memory. The associated consumption involves the execution
of specified policy actions in the runtime system and the eva-
luation process of the EM.

In order for the monitor module to send a notification to
the Event Module, the policy administrator should assign two
upper thresholds, one for the system memory (MemT) and
one for the system CPU (CPUT). When the monitored values
reach the thresholds, the event module is informed and it se-
quentially notifies the decision module. After that, the decisi-
on module stops some of the less significant actions, like sen-
ding the notification actions to enforcement module and post-
poning them on-demand evaluation process. When the system
comes back to normal, then all the modules are notified by the
monitor module.

3. History/Event Module
This module is responsible for storing information regard-

ing SPIT. The History Event Log (HEL) keeps the characteri-
stics of the messages that are blocked or characterized as
SPIT. The messages are received either by the Event module
or by the Monitor module.

C. The Proposed Platform
The proposed anti-SPIT policy-based framework is depict-

ed in Fig. 4. A run-time example will be herein illustrated.

Figure 4. ASPF modules

1. A SIP messages arrives and the SIP parser receives it.
The SIP parser is an automated process, integrated in our
module. It can scan SIP messages and extract the messa-
ge attributes (the main attributes are the header fields,
such as From, Contact, and SIP-URI and their values).

2. The Policy Decision Module (PDM) receives the extract-
ed SIP messages attributes and the XML corresponding
policy instance elements. The policy is taken from the
Policy repository or it is received directly by a PDM re-

quest. The policy elements are extracted by an XML par-
ser that allows navigation to the entire document, as if it
was a tree of “Nodes”. The parser reads XML into me-
mory and provides access to tag values of the document.

3. If an event is identified as potential SPIT, then the Policy
Decision Module (PDM) informs the Event Module. In
this case, PDM may ask for an immediate event evaluati-
on, based on the corresponding previous event.

4. The Event module stores the message details to the His-
tory/Event log repository. If there PDM asks for immedi-
ate evaluation, then the Event Module informs the decisi-
on module if there are any different actions to be taken,
but those already written in the policy. Finally, if another
policy rule applies for the specific SIP message and this
rule makes the message be rejected, then the PDM rejects
the message and asks the EM to record this message as
rejected.

5. The Policy Decision Module takes the input from the e-
vent module and reaches to a verdict if there are any acti-
ons to be taken.

6. The PDM returns the decision concerning the execution
of the specified action. The policy enforcement module
translates the action into the runtime system format
(mainly a plain SIP message) and returns it to the corres-
ponding communication entity (SIP server or UAC).

7. Periodically, an Event module process (policy optimizer)
evaluates the collected events (step 3), that are stored in
History/log event and calculates for each event the aggre-
gated value (e.g. how many times it happened in the last
5 min). If the event value exceeds a specific threshold,
then it updates the relevant policy rule in the correspond-
ing policy instance and informs the policy administrator,
who can analyze any recorded events and interfere when
he feels appropriate.

8. The Monitor Module (MM) examines the SIP messages,
based on the policy optimizer criteria. Whenever it iden-
tifies an inappropriate message, it stores its attributes to
the History/Event log.

9. MM also checks the run-time computational resources. It
informs the event module, whenever they pass a specific
threshold, thus helping the policy platform (ASPF) react
dynamically.

10. Finally, a web view was developed, with which the ad-
ministrator can monitor the overall system status, calcu-
late event repository size, and update/optimize the policy
instances. Steps 4 and 5 are executed only if there is a
need for immediate evaluation by the PDM.

VI. EVALUATION SECTION

The ASPF framework is able to handle more than 200 SIP
messages simultaneously (an acceptable limitation, as a VoIP
provider handles from 40-60 calls/sec according to French Te-
lecom [22]). That said, we will demonstrate the effectiveness
of the proposed framework, as well as its impact to the perfor-
mance of the server (host system).

http://en.wikipedia.org/wiki/Node_(computer_science)

7

Performance depends on two metrics: (a). “How much of
our system resources are consumed”, and (b). “Is the time
needed for handling SIP messages a noticeable delay”. As per
the first question, and in order to quantify how our policy
platform affects the overall system performance, we have to
record the corresponding values of the monitoring attributes
between two timestamps. Let the execution of our policy
framework begin at time t1 and end at time tn. In order to sim-
plify the real overload of ASPF, we should first record the SIP
infrastructure performance without ASPF, and then record the
values in the same time period with the use of ASPF. The pro-
posed formulas for the system resources consumption are:

CPU	usage	(%)	:	ΔCPUi		=	C’i	–	Ci	
Memory	usage	(%)	:	ΔMemi		=	Mem’i	–	MemCi,	

where Mem’I,	 C’I	 are	 recorded	values	with	ASFP	activated,	
and	MemI,	CI	are	the	recorded	values	without	the	ASPF	use.

The time needed for SIP messages to be processed by our
module was calculated by recording the process time of each
message by our framework. With these goals in mind, two
scenarios were tested for demonstrating the ASPF efficiency
and evaluating the metrics. The SIP message flows, which ful-
fill the scenarios, are based on known SIP call flow examples
[40,41].

In order to execute the test scenarios, two laboratories en-
vironments were constructed. The first one is a small network
environment. The second is an extensive infrastructure net-
work, which was created with simulation software (modelnet
[42]). The SIP server implemented is the SER server [43], an
open source software product [43].

A. Small Laboratory Environment
The small network environment (Fig. 5) consists of the

following fundamental entities:
· A SIP SER server. It has been customized in order to re-

gister users, redirect SIP messages, and establish calls.
The PC used for setting up the SER server was a Pentium
4, 2.8GHz, 1GB RAM, running the FEDORA 9 Operat-
ing System.

· An ASPF platform. It has been installed in the SIP ser-
ver, at the “logical” entrance of the network environ-
ment, and includes the domain and clients policies.

· A number of soft phone clients that have been part of the
VoIP domain. The clients are active (i.e., ready to inter-
act with incoming calls). The soft-phone software is the
open-source twinkle [44].

· Various external clients. These clients are programmed
to make new calls to the internal clients. The exact num-
ber of the external clients depends on each use case/sce-
nario. The calls are initiated by using SIPp [45], which
establishes calls as well.

1. Proposed Scenario and Results
The scope of the scenario is to identify if the ASPF is able

to a) manage an increased flow of calls without abating its
functionality or the availability of the VoIP service, b) use ex-
tensively the policy repository, which means that when a call
is received for specific clients then his XML policy instance is

retrieved, and c) characterize a caller as spitter based on the
outcomes of the Event module and the History log.

Figure 5. Test laboratory environment

In order to monitor and record the behavior of our plat-
form under heavy load of SIP messages, we produced a high
number of incoming calls. In order to do so, we implemented
10 external clients, which are programmed to send 10.000 SIP
messages (INVITE), 100 registered clients receiving the mes-
sages and a policy file for 80 ones. The callee’s policy was re-
trieved, when a message was received and the callee was i-
dentified by the From Field. If a message referred to a client/-
recipient who was not registered, the default domain security
policy was applied. Moreover, the number of legitimate and
non-legitimate messages was random, but only 2 clients were
initiating non legitimate call flows. The non-legitimate calls
were related to a) blacklisted domains, b) messages with
dubious data, like those containing MIME and c) response
messages with number 300 like those described in section 4.

The first result of the test was that the ASPF worked pro-
perly the whole period of time. That was the case, even
though there were queries to the database, I order to identify
the malicious users/domains and retrieve the client’s policies,
which make the computational resources consumptions great-
er. The SIP messages were generated randomly towards the
SIP clients. Each one of the 100 clients has received at least 1
message, thus all the policy files were processed.

As far as ASPF’s adaptability is concerned, the experi-
ment showed that 309 messages were forwarded. It took
360.192 msec till the ASPF apprehended that specific clients
were conducting a SPIT attack. Afterwards, none of the pos-
sible SPIT messages were forwarded and all were banned,
because the clients where blacklisted The ASPF has marked
all the 309 messages (based on the client’s or domain policy)
to be forwarded later, either to the client, or to an external
module that could be an audio CAPTCHA.

The average message processing time by ASPF was 452
msec. The maximum was 389 msec. Both considered accept-
able, since the SIP timeout could not be <0,5 sec.

Even though the CPU and memory usages were increased
(Fig. 6), they did not reach any prohibitive level and alert the
decision module (the threshold was set 90% of the CPU and
memory usage). The CPU usage peak, which occurs from the
15th to the 23rd sec, happens because the ASPF handles simul-
taneously more than 50 SIP messages/sec. The memory usage
increases a few second before, because there are a lot of poli-
ce files retrieved from Policy Repository. At the end, both
CPU and memory usage decreased due to the rejection of the
identified spitters.

Finally, all non-legitimate messages were successfully i-
dentified (2982 messages) and the overall number of lost mes-
sages was 0.

8

B. Extensive Laboratory Environment	
An overview of the emulated network topology is shown

in Fig. 5. It consists of the following fundamental entities:
· SER SIP servers (3). They have been customized, so

that register users can redirect SIP messages and estab-
lish calls. Each of those servers creates a VoIP domain.

· ASPF platforms (7). The 2 of them have been installed to
SIP server hosts, at the “logical” entrance of the VoIP in-
frastructure. The other 5 are placed in front of the inter-
nal clients. The first 2 ASPFs include all the ASPF mo-
dules (extensive version). The remaining 5 (protecting
internal clients) include only the users’ policy and do not
include modules for adaptive management (client versi-
on), due to client computational limitations.

· Soft phone clients (9). These clients are active, i.e., they
are ready to receive calls. The soft-phones are twinkle o-
pen-source soft-phones [44]. The calls are initiated by
using SIPp [45].

Figure 6. CPU and Memory Usage

For the purpose of the evaluation, we utilized a network
emulator called modelnet. By using it we developed a realistic
topology consisting of the following network elements: 3
hosts of SER servers, 9 VoIP nodes that host one IP phone
each, and 3 access routers. The network link between each
client and the respective access routers supports data rates of
10Mbps. The backbone links between the SER servers sup-
port data rates of 54Mbps.

This network topology has been e-mulated using a core e-
mulator (running FreeBSD 4.11) and 3 desktop PC, in which
we have distributed the 12 virtual hosts (3 servers and 9 IP
clients). Summarizing, each physical host ran 1 server and 3-5
virtual nodes.

2. Proposed Scenario and Results
We tested the ASPF in a realistic environment. ASPF

should demonstrate the ability to manage an increased flow of
calls without abating its functionality and affecting the availa-
bility of the other IP services (e.g., ordinary file transfer). In
order to monitor and record the behavior of our platform, in
relationship with other IP services, we simulated a number of
ad-hoc flows of file transfers. The flows concluded to a total
decrease of 40% of the network bandwidth, i.e., the SIP host
where connected to 6Mbps network lines. We did not evaluate
any memory or CPU usage, because the simulation tool offer-
ed no such functionality; however, as the experiment came to
a normal end, we can confidently argue that the platform suf-
fered no visible harm, as a proper VoIP server would have
more resources than the simulation tool.

Figure 7. Modelnet topology of a VoIP infrastructure

Taking the above into consideration, we virtualized legiti-
mate and illegitimate SIP messages. The message flows for
the simulation scenario are depicted in Table 2. The 1st co-
lumn shows the IP phones that initiate the calls, the 2nd and 3rd

columns show the legitimate and illegitimate SIP messages
initiated by each IP phone, and the 4th column shows the
domain recipients of the messages. The experiment lasted 30
min (each established call lasted ~3 sec).

Table 2. Call scenario

IP
Phone

Messages
Domains

Legitimate Non legitimate
1 5000 0 2,3
2 1000 4000 2,3
3 5000 0 1
4 6000 0 3
5 10000 0 1,3
6 3000 7000 1,3
7 5000 0 1
8 4000 0 2
9 6000 0 1,2

9

Each domain handled more than 13.000 messages success-
fully. The ASPF platforms also handled successfully most of
the messages. Moreover, the maximum processing time for a
SIP message was <0,5 sec, considered acceptable, as the esta-
blishment of a VoIP call usually takes 4-6 sec [22]. In Table 3
we present the number of calls served by each ASPF, as well
as how many of them were successfully forwarded or rejected.

The domain ASPF confronted every SPIT attack, which
was based on SIP messages SPIT characteristics, like inappro-
priate text in Subject field. Moreover, both ASPF of domains
3 and 4 identified that the IP phones 2 and 6 were “spitters”
because they produced too many calls/min. On the other hand,
IP phones 3 and 5 received all the spit calls, because their
ASPF were client versions, without being able to identify the
SPIT attacks based on statistical characteristics.

Table 3. ASPF message handling

ASPFs
Messages

Served Rejected Lost
Domain 1 16895 3122 79
Domain 3 25598 6643 31
IP phone 1 7112 0 0
IP phone 3 3087 363 0
IP phone 4 2832 874 0
IP phone 5 3100 0 0
IP phone 9 7102 0 0

The only limitation observed is that 120 SIP messages we-
re lost (from a total of 45.000 legitimate SIP messages), mea-
ning that we lost 120 out of 15.000 calls, since it needs 3 ex-
changed SIP messages to establish a media session.

VII. CONCLUSIONS AND FURTHER RESEARCH

Voice Spam (SPIT) may be a considerable threat in the ne-
ar future. To face it, appropriate defensive mechanisms should
be introduced. In this paper, we provided the reader with a
proposed architecture for policy-based management for SPIT
prevention and handling, called ASPF, which is based on vul-
nerability analysis of the protocol SIP. In this paper, we pro-
posed formal conditions, which are fulfilled when a SPIT at-
tack occurs. Based on then, we developed an anti-SPIT orient-
ed policy XML schema.

We evaluated the proposed framework, by implementing a
software policy environment, and demonstrated its feasibility
by building a working prototype. We showed that ASPF sup-
ports automated policy deployment and flexible event trig-
gers, so as to permit dynamic policy configuration. Appropria-
te experiments were performed, so as to demonstrate the ro-
bustness, efficiency, and scalability of this architecture. Final-
ly, we showed that ASPF is made to be easily integrated with
other organization security mechanisms, like audio CAPTC-
HA.

A topic for further research could be the implementation
of a module, which assures the scalability of the history-based
policy engine by constraining past event repository size. This
module could perform lookups over the entirety of the history
repository. However, the fact that the periodicity of the purge
process can be defined according to system processing capaci-

ty, keeps this process from significantly interfering with usual
policy evaluations. Thus, two major aspects influence the rele-
vance checking: the number of events in the History Log and
the accuracy of the evaluation process. Moreover, a further
input for additional conditions would be provided by Zave
[46], who identified SIP security vulnerabilities through
model-checking.

Our work could also enhance a distributed perspective
[47], where the total control remains under the control of the
network administrator, but the policies and credentials are dis-
tributed (through IPSec, or a web server, a directory-like mec-
hanism or some other protocol) to the users and hosts in the
network.

References
1. T. Walsh, D. Kuhn, Challenges in Securing Voice over

IP, NIST, USA.
2. S. Sawda, O. Urien, “SIP security attacks and solutions: A sta-

te-of-the-art review”, in Proc. of the IEEE International Confe-
rence on Information and Communication Technologies: From
Theory to Applications, Vol. 2, pp. 3187-3191, April 2006.

3. J. Rosenberg, C. Jennings, The Session Initiation Protocol
(SIP) and Spam, Network Working Group, RFC 5039, January
2008.

4. J. Quittek, S. Niccolini, S. Tartarelli, M. Stiemerling, M. Brun-
ner, T. Ewald, “Detecting SPIT Calls by Checking Human
Communication Patterns”, in Proc. of the IEEE International
Conference on Communications, pp. 1979-84, UK, 2007.

5. D. Graham-Rowe, “A Sentinel to Screen Phone Calls Techno-
logy”, MIT Review, 2006.

6. M. Winslett, "Policy-Driven Distributed Authorization: Status
and Prospects", in Proc. of the 8th IEEE International Work-
shop on Policies for Distributed Systems and Networks, pp. 12-
18, 2007.

7. G. Marias, S. Dritsas, M. Theoharidou, Y. Mallios, D. Gritza-
lis, “SIP vulnerabilities and antiSPIT mechanisms assessment”,
in Proc. of the 16th IEEE International Conference on Compu-
ter Communications and Networks, USA, pp. 597-604, August
2007.

8. D. Gritzalis, Y. Mallios, "A SIP-based SPIT management fra-
mework", Computers & Security, Vol. 27, Nos. 5-6, pp.136-
153, October 2008.

9. J. Rosenberg, et al, Session Initiation Protocol (SIP), RFC
3261, June, 2002.

10. D. Agrawal, J. Giles, K.-W. Lee, K. Voruganti, K. Filali-Adib,
“Policy-based validation of san configuration”, in Proc. of In-
ternational Workshop on Policies for Distributed Systems and
Networks, June 2004.

11. D. Agrawal, S. Calo, J. Giles, K.-W. Lee, D. Verma, “Policy
management for networked systems and applications”, in Proc.
of the IFIP/IEEE International Symposium on Integrated Net-
work Management, May 2005.

12. E. Baralis, J. Widom, “An algebraic approach to static analysis
of active database rules”, ACM Transactions on Database Sys-
tems, 25(3):269-332, 2000.

13. M. Sloman, E. Lupu, “Security and management policy specifi-
cation”, IEEE Network, Special Issue on Policy-Based Net-
working 16(2), pp.10-19, 2002.

14. P. Gama, P. Ferreira, “Obligation policies: An enforcement
platform,” in Proc. of the 6th IEEE International Workshop on
Policies for Distributed Systems and Networks, Sweden, June
2005.

15. R. Dantu, P. Kolan, “Detecting spam in voip networks”, in
Proc. of the Steps to Reducing Unwanted Traffic on the Inter-
net Workshop, USA, July 2005.

16. V. A. Balasubramaniyan, M. Ahamad, H. Park., “Callrank:
Combating spit using call duration, social networks and global

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20el%20sawda%20%20s.%3CIN%3Eau)&valnm=+El+Sawda,+S.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20urien%20%20p.%3CIN%3Eau)&valnm=++Urien,+P.&reqloc%20=others&history=yes
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/q/Quittek:J=uuml=rgen.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Tartarelli:Sandra.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Stiemerling:Martin.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Brunner:Marcus.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Brunner:Marcus.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/e/Ewald:Thilo.html
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4288670
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4288670

10

reputation”, in Proc. of the 4th Conference on Email and Anti-
Spam, USA, August 2007.

17. R. Zhang, X. Wang, X. Yang, and X. Jiang., “Billing attacks on
sip-based voip systems” in Proc. the lst USENIX Workshop on
Offensive Technologies, USA, August 2007.

18. P. Patankar, G. Nam, G. Kesidisand, C. Das, “Exploring anti-
spam models in large scale voip systems,” in Proc. of the 28th

International Conference on Distributed Computing Systems,
China, June 2008.

19. D. Shin, J. Ahn, C. Shim, “Progressive multi gray-leveling: A
voice spam protection algorithm”, IEEE Networks, Vol. 20,
No. 5, pp. 18-24, Sep. 2006.

20. B. Mathieu, Q. Loudier, Y. Gourhant, F. Bougant, M. Osty,
“SPIT Mitigation by a Network-Level Anti-SPIT Entity”, in
Proc. of the 3rd Annual VoIP Security Workshop, Germany,
June 2006.

21. Tschofenig, H., Wing, D., Schulzrinne, H., Froment, T., Da-
wirs, G., A document format for expressing authorization poli-
cies to tackle spam and unwanted communication for Internet
Telephony (draft-tschofenig-sipping-spit-policy-02.txt).

22. Lennox, J., Wu, X., Schulzrinne, H., Call Processing Langua-
ge (CPL): A Language for User Control of Internet Telephony
Services, RFC 3880, Columbia University, October 2004.

23. Y. Soupionis, S. Dritsas, D. Gritzalis, "An adaptive policy-bas-
ed approach to SPIT management", in Proc. of the 13th Europe-
an Symposium on Research in Computer Security, J. Lopez S.
Jajodia (Eds.), pp. 446-460, Springer, Spain, October 2008.

24. R. Haskins, N. Dale, Slamming Spam: Guide for Administra-
tors, Addison-Wesley Professional, 2005.

25. J. Zdziarski, Ending Spam: Bayesian Content Filtering and the
Art of Statistical Language Classification, USA, 2005.

26. Cisco Systems, Session Initiation Protocol gateway call flows
and compliance information SIP messages and methods overvi-
ew (http://www.cisco.com/application/pdf/en/us/guest/products
/ps4032/c2001/ccmigration_09186a00800c4bb1.pdf).

27. Cisco Systems, SIP Messages and Methods Overview
(http://www.cisco.com/univercd/cc/td/doc/product/software/ios
122/rel_docs/sip_flo/preface.pdf).

28. A. Keromytis, "Voice over IP: Risks, Threats and Vulnerabili-
ties", in Proc. of the Cyber Infrastructure Protection Conferen-
ce, USA, June 2009.

29. V. Mehta, C. Bartzis, H. Zhu, E. Clarke, J., “Ranking Attack
Graphs”, in Proc. of Recent Advances in Intrusion Detection
Workshop, pp. 127–144, Springer, Germany, September 2006.

30. P. Ammann, D. Wijesekera, S. Kaushik, “Scalable, graph-bas-
ed network vulnerability analysis”, in Proc. of the 9th ACM
Conference on Computer and Communications Security, pp.
217-224, 2002.

31. O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. Wing, ”Automa-
ted generation and analysis of attack graphs”, in Proc. of the
IEEE Symposium on Security and Privacy, pp. 273-284, 2002.

32. Y. Mallios, S. Dritsas, B. Tsoumas, D. Gritzalis, “Attack mo-
deling of SIP-oriented SPIT” in Proc. of the 2nd International
Workshop on Critical Information Infrastructure Security
(CRITIS 2007), Springer, Spain, October 2007.

33. A. Anderson, "An Introduction to the Web Services Policy
Language", in Proc. of the 5th IEEE International Workshop on
Policies for Distributed Systems and Network, 2004.

34. B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, T. Free-
man, “A Multipolicy Authorization Framework for Grid Secu-
rity”, in Proc. of the 5th IEEE international Symposium on
Network Computing and Applications, IEEE Computer Socie-
ty, USA, pp. 269-272, July 2006.

35. L. Lymberopoulos, E. Lupu, M. Sloman, “PONDER policy im-
plementation and validation in a CIM and differentiated servi-
ces framework;” IEEE/IFIP Network Operations and Manage-
ment Symposium, Vol. 1, pp. 31-44, April 2004.

36. A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay,
J. Robie, J. Simeon, XPath 2.0 specification, W3C Recommen-
dation January 2007.

37. S. Dritsas, J. Soupionis, M. Theoharidou, J. Mallios, D. Gritza-
lis, "SPIT Identification Criteria Implementations: Effective-
ness and Lessons Learned", in Proc. of the 23rd International
Information Security Conference, Samarati P., et al. (Eds.), pp.
381-395, Springer, Italy, September 2008

38. R. Dantu, S. Fahmy, H. Schulzrinne, J. Cangussu, “Issues and
challenges in securing VoIP”, Computers & Security, Vol. 28,
No. 8, pp. 743-753, 2009.

39. Y. Soupionis, G. Tountas, D. Gritzalis, "Audio CAPTCHA for
SIP-based VoIP", in Proc. of the 24th International Information
Security Conference, pp. 25-38, D. Gritzalis, J. Lopez (Eds.),
IFIP AICT 297, Springer, Cyprus, May 2009.

40. H. Schulzrinne, S. Narayanan, J. Lennox, M. Doyle, SIPstone –
Benchmarking SIP Server Performance, Columbia University,
Ubiquity, April, 2002.

41. A. Johnston, S. Donovan, R. Sparks, C. Cunningham, D. Wil-
lis, J. Rosenberg, K. Summers, H. Schulzrinne, SIP Call Flow
Examples, IETF Internet Draft, December 2001.

42. A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J.
Chase, D. Becker., "Scalability and Accuracy in a Large-Scale
Network Emulator," in Proc. of the 5th Symposium on Operat-
ing Systems Design and Implementation, December 2002.

43. SER server version 2.0 (www.iptel.org/ser).
44. Twinkle softphone (http://www.twinklephone.com) (retrieved

25.08.2010).
45. SIPP traffic generator for the SIP protocol

(http://sipp.sourceforge.net/).
46. P. Zave, “Understanding SIP through model-checking”, in

Proc. of the 2nd International Conference on Principles, Sys-
tems and Applications of IP Telecommunications, pp. 256-279,
Springer-Verlag, LNCS 5310, 2008.

47. S. Ioannidis, A. Keromytis, S. Bellovin, J. Smith, “Implement-
ing a Distributed Firewall”, in Proc. of the ACM Computer and
Communications Security Conference, pp. 190-199, Greece,
November 2000.

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/rel_docs/sip_flo/preface.pdf
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/rel_docs/sip_flo/preface.pdf
http://www.iptel.org/ser
http://sipp.sourceforge.net/
http://www2.research.att.com/%7Epamela/under2.pdf

	Introduction
	Related WORK
	Anti-SPIT Mechanisms and Techniques
	VoIP Policy Infrastructure Methodologies

	Methodology
	Foundation Step
	Implementation Step

	Foundation Step
	Vulnerabilities and SPIT Criteria Identification
	Attack scenario development
	Policy Approach
	1. Policy Rule
	Policy Condition
	Policy Action

	2. Policy Instance Creation

	.XML representation

	Implementation Step
	Architecture Components for PolicyEnforcement
	1. Policy Decision Module
	2. Policy Enforcement Module
	3. Policy Repository

	Architecture Components forAdaptive and Dynamic Policy Management
	1. Event Module
	2. Monitor Module
	3. History/Event Module

	The Proposed Platform

	Evaluation section
	Small Laboratory Environment
	1. Proposed Scenario and Results

	Extensive Laboratory Environment
	2. Proposed Scenario and Results

	Conclusions and further research
	Conclusions and further research
	Conclusions and further research
	Conclusions and further research
	References

